Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Document Type
Year range
1.
Antibiotics (Basel) ; 10(9)2021 Sep 04.
Article in English | MEDLINE | ID: covidwho-1390513

ABSTRACT

Municipal wastewaters can generally provide real-time information on drug consumption, the incidence of specific diseases, or establish exposure to certain agents and determine some lifestyle consequences. From this point of view, wastewater-based epidemiology represents a modern diagnostic tool for describing the health status of a certain part of the population in a specific region. Hospital wastewater is a complex mixture of pharmaceuticals, illegal drugs, and their metabolites as well as different susceptible and antibiotic-resistant microorganisms, including viruses. Many studies pointed out that wastewater from healthcare facilities (including hospital wastewater), significantly contributes to higher loads of micropollutants, including bacteria and viruses, in municipal wastewater. In addition, such a mixture can increase the selective pressure on bacteria, thus contributing to the development and dissemination of antimicrobial resistance. Because many pharmaceuticals, drugs, and microorganisms can pass through wastewater treatment plants without any significant change in their structure and toxicity and enter surface waters, treatment technologies need to be improved. This short review summarizes the recent knowledge from studies on micropollutants, pathogens, antibiotic-resistant bacteria, and viruses (including SARS-CoV-2) in wastewater from healthcare facilities. It also proposes several possibilities for improving the wastewater treatment process in terms of efficiency as well as economy.

2.
J Water Process Eng ; 43: 102223, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1386151

ABSTRACT

Waterborne pathogens including viruses, bacteria and micropollutants secreted from population can spread through the sewerage system. In this study, the efficiency of unique effervescent ferrate-based tablets was evaluated for total RNA and DNA removal, disinfection and degradation of micropollutants in hospital wastewater. For the purpose of testing, proposed tablets (based on citric acid or sodium dihydrogen phosphate) were used for various types of hospital wastewater with specific biological and chemical contamination. Total RNA destruction efficiency using tablets was 70-100% depending on the type of acidic component. DNA destruction efficiency was lower on the level 51-94% depending on the type of acidic component. In addition, our study confirms that effervescent ferrate-based tablets are able to efficiently remove of SARS-CoV-2 RNA from wastewater. Degradation of often detected micropollutants (antiepileptic, antidepressant, antihistamine, hypertensive and their metabolites) was dependent on the type of detected pharmaceuticals and on the acidic component used. Sodium dihydrogen phosphate based tablet appeared to be more effective than citric acid based tablet and removed some pharmaceuticals with efficiency higher than 97%. Last but not least, the disinfection ability was also verified. Tableted ferrates were confirmed to be an effective disinfectant and no resistant microorganisms were observed after treatment. Total and antibiotic resistant bacteria (coliforms and enterococci) were determined by cultivation on diagnostic selective agar growth media.

3.
Journal of Environmental Chemical Engineering ; : 105746, 2021.
Article in English | ScienceDirect | ID: covidwho-1253178

ABSTRACT

Wastewaters are considered a remarkable source of micropollutants capable of influencing the environment both directly and indirectly. Here we tested porous ecological carbon (Biochar), an effective sorbent material for removing pharmaceuticals, drugs, and their metabolites found in wastewaters. The tested Biochar type was first characterised and used for adsorption experiments of selected micropollutants from a municipal WWTP (wastewater treatment plant) effluent sample. The sorption efficiency was studied on selected pharmaceuticals due to their common presence in aquatic ecosystems. The results show that the studied Biochar type removed the pharmaceuticals with high efficiency (above 90%), so this material can potentially be applied in wastewater treatment. We achieved greater than 99% efficiency in total RNA removal from wastewater. Wastewater might contain infectious RNA fragments of the SARS-CoV-2 virus. However, Biochar can be used as a sorbent in wastewater treatment to remove antibiotic resistance genes. We have also observed a total DNA removal ability of Biochar. On the other hand, the total number and antibiotic-resistant coliform bacteria and enterococci were not changed after Biochar wastewater treatment.

SELECTION OF CITATIONS
SEARCH DETAIL